Partially linear monotone methods with automatic variable selection and monotonicity direction discovery

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic model selection for partially linear models

We propose and study a unified procedure for variable selection in partially linear models. A new type of double-penalized least squares is formulated, using the smoothing spline to estimate the nonparametric part and applying a shrinkage penalty on parametric components to achieve model parsimony. Theoretically we show that, with proper choices of the smoothing and regularization parameters, t...

متن کامل

Variable Selection for Partially Linear Models with Measurement Errors.

This article focuses on variable selection for partially linear models when the covariates are measured with additive errors. We propose two classes of variable selection procedures, penalized least squares and penalized quantile regression, using the nonconvex penalized principle. The first procedure corrects the bias in the loss function caused by the measurement error by applying the so-call...

متن کامل

Linear or Nonlinear? Automatic Structure Discovery for Partially Linear Models.

Partially linear models provide a useful class of tools for modeling complex data by naturally incorporating a combination of linear and nonlinear effects within one framework. One key question in partially linear models is the choice of model structure, that is, how to decide which covariates are linear and which are nonlinear. This is a fundamental, yet largely unsolved problem for partially ...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models.

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Medicine

سال: 2020

ISSN: 0277-6715,1097-0258

DOI: 10.1002/sim.8680